Sulforaphane enhances TRAIL-induced apoptosis through the induction of DR5 expression in human osteosarcoma cells.
نویسندگان
چکیده
Sulforaphane (SFN), a naturally occurring isothiocyanate, is an attractive agent because of its potent anticancer effects. SFN suppresses the proliferation of various cancer cells in vitro and in vivo. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is also one of the most promising candidates for cancer therapeutics owing to its ability to selectively induce apoptosis in tumor cells. In this study, we report that SFN enhances TRAIL-induced apoptosis in human osteosarcoma cells, Saos2 and MG63. The apoptosis induced by co-treatment with SFN and TRAIL was markedly blocked by a dominant negative form of the TRAIL receptor or caspase inhibitors. The combined use of SFN and TRAIL effectively induced Bid cleavage and the activation of caspases 8, 10, 9 and 3 at ineffective concentrations for each agent. SFN upregulated the expression of death receptor 5 (DR5), a receptor for TRAIL, at mRNA and protein levels in a dose-dependent manner. In addition, the SFN-mediated sensitization to TRAIL was reduced by DR5 siRNA, suggesting that the sensitization was at least partially mediated through the induction of DR5 expression. Furthermore, SFN sensitized TRAIL-induced apoptosis in a p53-independent manner. On the other hand, SFN neither induced DR5 protein expression or enhanced TRAIL-induced apoptosis in normal human peripheral blood mononuclear cells. Thus, combined treatment with SFN and TRAIL might be a promising therapy for osteosarcoma.
منابع مشابه
Tunicamycin enhances tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human prostate cancer cells.
Death receptor 5 (DR5/TRAIL-R2) is an apoptosis-inducing membrane receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L). In this study, we showed that tunicamycin, a naturally occurring antibiotic, is a potent enhancer of TRAIL-induced apoptosis through up-regulation of DR5 expression. Tunicamycin significantly sensitized PC-3, androgen-independent human prostate ca...
متن کاملSulforaphane enhances the therapeutic potential of TRAIL in prostate cancer orthotopic model through regulation of apoptosis, metastasis, and angiogenesis.
PURPOSE The purpose of this study was to examine the molecular mechanisms by which sulforaphane enhances the therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in prostate cancer. EXPERIMENTAL DESIGN Cell viability and apoptosis assays were done by XTT and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, respectively. Tumor-bea...
متن کاملSulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5.
Sulforaphane is a chemopreventive agent present in various cruciferous vegetables, including broccoli. Here, we show that treatment with tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) in combination with subtoxic doses of sulforaphane significantly induces rapid apoptosis in TRAIL-resistant hepatoma cells. Neither TNF-alpha- nor Fas-mediated apoptosis was sensitized in he...
متن کاملThe farnesyltransferase inhibitor R115777 up-regulates the expression of death receptor 5 and enhances TRAIL-induced apoptosis in human lung cancer cells.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) preferentially induces apoptosis in transformed or malignant cells, thus exhibiting potential as a tumor-selective apoptosis-inducing cytokine for cancer treatment. Many studies have shown that the apoptosis-inducing activity of TRAIL can be enhanced by various cancer therapeutic agents. R115777 (tipifarnib) is the first farnesyltr...
متن کاملSilibinin sensitizes TRAIL-mediated apoptosis by upregulating DR5 through ROS-induced endoplasmic reticulum stress-Ca2+-CaMKII-Sp1 pathway
In this study, we addressed how silibinin enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in various cancer cells. Combined treatment with silibinin and TRAIL (silibinin/TRAIL) induced apoptosis accompanied by the activation of caspase-3, caspase-8, caspase-9, and Bax, and cytosolic accumulation of cytochrome c. Anti-apoptotic proteins such as Bcl-2, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 27 9 شماره
صفحات -
تاریخ انتشار 2006